If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y-3y^2=0
a = -3; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-3)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-3}=\frac{-10}{-6} =1+2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-3}=\frac{0}{-6} =0 $
| 3.2m-2=4.2m | | 3(2z+8)=2(z-1)+18 | | 12x+16=84 | | 8w-7=4w+13 | | 10-4d=-10-8d | | 10=2n+1/2n | | X+x+7+3(x+7)=73 | | 10+4h=-9+1+7h | | 10x-1=5x+14 | | 9.67+8.1c=4.21+6.4c | | 21=-7(p+8) | | 8s-6=2s+(11) | | -5x+3(x=5)=1 | | -5u=-9+4u | | 10-7v=94 | | 9w-4-6w=5+2w | | 8x1=72 | | -4r+6=13 | | -59=-7p-3 | | 10+b=-b-8 | | 17q-6q+q+9q=15 | | 3=j/4− 1 | | m/2+7=8 | | x-6=-2x-3 | | -0.5c=-0.3c+1.44 | | {t}{7}=-4 | | 4=j−6/2 | | x+90+73=180 | | 14x+35=15x+50 | | | | 3.23+5.7m=1.08+1.4m | | 4(2x=3)=9(3x-5) |